Linear superposition principle of hyperbolic and trigonometric function solutions to generalized bilinear equations
نویسندگان
چکیده
منابع مشابه
Hirota bilinear equations with linear subspaces of hyperbolic and trigonometric function solutions
Linear superposition principles of hyperbolic and trigonometric function solutions are analyzed for Hirota bilinear equations, with an aim to construct a specific sub-class of N-soliton solutions formulated by linear combinations of hyperbolic and trigonometric functions. An algorithm using weights is discussed and a few illustrative application examples are presented. 2013 Elsevier Inc. All ri...
متن کاملLinear superposition principle applying to Hirota bilinear equations
A linear superposition principle of exponential traveling waves is analyzed for Hirota bilinear equations, with an aim to construct a specific sub-class of N-soliton solutions formed by linear combinations of exponential traveling waves. Applications are made for the 3 + 1 dimensional KP, Jimbo–Miwa and BKP equations, thereby presenting their particular N-wave solutions. An opposite question is...
متن کاملBilinear equations, Bell polynomials and linear superposition principle
A class of bilinear differential operators is introduced through assigning appropriate signs and used to create bilinear differential equations which generalize Hirota bilinear equations. The resulting bilinear differential equations are characterized by a special kind of Bell polynomials and the linear superposition principle is applied to the construction of their linear subspaces of solution...
متن کاملInequalities involving generalized trigonometric and hyperbolic functions
The Huygens-Wilker type inequalities involving generalized trigonometric functions and generalized hyperbolic functions are established. The first and the second inequalities of Huygens and Wilker, for classes of functions under discussion, are also investigated.
متن کاملPeriodic Solutions of Nonlinear Equations Obtained by Linear Superposition
We show that a type of linear superposition principle works for several nonlinear differential equations. Using this approach, we find periodic solutions of the Kadomtsev-Petviashvili (KP) equation, the nonlinear Schrödinger (NLS) equation, the λφ4 model, the sine-Gordon equation and the Boussinesq equation by making appropriate linear superpositions of known periodic solutions. This unusual pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2016
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2016.02.006